Preparation and Characterization of PLGA Nanoparticles Containing Plasmid DNA Encoding Human IFN-lambda-1/IL-29
Authors
Abstract:
During the 15 years since the discovery of type III human interferons [IFN-λ1(IL-29), IFN-λ2(IL-28A), and IFN-λ3(IL-28B)], numerous biological properties such as anticancer, antiviral, and immunomodulatory activities of this new IFN family have been investigated. Several studies have shown that the encapsulation of pcDNA with PLGA nanoparticles (NPs) protects them against DNase enzyme action and increases the efficiency of gene delivery to the cells. The purpose of this study was to encapsulate pcDNA encoding IFN-λ1 (pIFN-λ1) with a simple and cost-effective method using PLGA NPs. The pIFN-λ1-loaded PLGA NPs were produced by a double-emulsion-solvent evaporation method and characterized in terms of size, size distribution, and zeta potential by DLS and morphologically by SEM and TEM. The bioactivity of NPs was also examined by fluorescent microscopy. The results showed that IFN-λ1 expressed by HEK293T cells could protect HepC-2 cells from the cytopathic effects of EMCV. The NPs were spherical in shape with a mean diameter of 380 ± 3 nm, a zeta potential of −3.3 ± 7.6 mV, an encapsulation efficiency of 75 ± 5%, and a loading capacity of 0.83 ± 0.06. The NPs were also bioactive and easily engulfed by RAW264.7 cells. The pIFN-λ1 could be sustainably released from NPs. Due to the facility and affordability of encapsulation of pIFN-λ1 in the PLGA NPs proposed in this study and the advantages of encapsulation by PLGA, it appeared rational to use pIFN-λ1-loaded NPs instead of naked pIFN-λ1 to determine other unexplained activities of this new cytokine or to use it as an alternative or adjunct to current IFN-α therapy.
similar resources
Preparation and characterization of chitosan/β-cyclodextrin nanoparticles containing plasmid DNA encoding interleukin-12.
Interleukin-12 (IL-12) as a cytokine has been proved to possess antitumor effects via stimulating the immune system. Non-viral gene delivery systems offer several advantages, including easiness in production, low cost, safety; low immunogenicity and can carry higher amounts of genetic material without limitation on their sizes.pUMVC3-hIL12 loaded Low Molecular Weight chitosan/β-cyclodextrin (LM...
full textRapid preparation and identification of insert-containing recombinant plasmid DNA.
The identification of transformant bacterial colonies containing potential recombinant DNA clones can be performed using a wide variety of screening methods including colony hybridization and autoradiography, polymerase chain reaction (PCR) and restriction endonuclease analysis of individual plasmid DNA (1,5). While colony hybridization can efficiently screen large numbers of recombinant clones...
full textPreparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA
The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical prope...
full textpreparation, characterization and cytotoxic effects of silica nanoparticles containing epirub
full text
Preparation, optimization and characterization of PLGA nanoparticle
Aim of present study is to prepare PLGA nanoparticle. Nanoparticles were prepared by double emulsification solvent evaporation method. Various formulation and process variable which could affect the preparation and properties of nanoparticles. These formulation variables were identified and optimized to get uniform preparation with highest encapsulation efficiency. Formulation variables include...
full textMy Resources
Journal title
volume 18 issue 1
pages 156- 167
publication date 2019-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023